Root isolation of zero-dimensional polynomial systems with linear univariate representation
نویسندگان
چکیده
منابع مشابه
Root Isolation of Zero-dimensional Polynomial Systems with Linear Univariate Representation
In this paper, a linear univariate representation for the roots of a zero-dimensional polynomial equation system is presented, where the roots of the equation system are represented as linear combinations of roots of several univariate polynomial equations. The main advantage of this representation is that the precision of the roots can be easily controlled. In fact, based on the linear univari...
متن کاملA Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems
We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zerodimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The compl...
متن کاملUnivariate Polynomial Real Root Isolation: Continued Fractions Revisited
We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method’s good performance in practice. We improve the previously known bound by a factor of dτ , where d is the polynomial degree and τ bounds the coefficient bitsize, thu...
متن کاملZero Decomposition with Multiplicity of Zero-Dimensional Polynomial Systems
We present a zero decomposition theorem and an algorithm based on Wu’s method, which computes a zero decomposition with multiplicity for a given zerodimensional polynomial system. If the system satisfies some condition, the zero decomposition is of triangular form.
متن کاملReal root refinements for univariate polynomial equations
Real root finding of polynomial equations is a basic problem in computer algebra. This task is usually divided into two parts: isolation and refinement. In this paper, we propose two algorithms LZ1 and LZ2 to refine real roots of univariate polynomial equations. Our algorithms combine Newton’s method and the secant method to bound the unique solution in an interval of a monotonic convex isolati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2012
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2011.12.011